AtHKT1 is a salt tolerance determinant that controls Na(+) entry into plant roots.

نویسندگان

  • A Rus
  • S Yokoi
  • A Sharkhuu
  • M Reddy
  • B H Lee
  • T K Matsumoto
  • H Koiwa
  • J K Zhu
  • R A Bressan
  • P M Hasegawa
چکیده

Two Arabidopsis thaliana extragenic mutations that suppress NaCl hypersensitivity of the sos3-1 mutant were identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated that sos3-1 hkt1-1 and sos3-1 hkt1-2 plants have allelic mutations in AtHKT1. AtHKT1 mRNA is more abundant in roots than shoots of wild-type plants but is not detected in plants of either mutant, indicating that this gene is inactivated by the mutations. hkt1-1 and hkt1-2 mutations can suppress to an equivalent extent the Na(+) sensitivity of sos3-1 seedlings and reduce the intracellular accumulation of this cytotoxic ion. Moreover, sos3-1 hkt1-1 and sos3-1 hkt1-2 seedlings are able to maintain [K(+)](int) in medium supplemented with NaCl and exhibit a substantially higher intracellular ratio of K(+)/Na(+) than the sos3-1 mutant. Furthermore, the hkt1 mutations abrogate the growth inhibition of the sos3-1 mutant that is caused by K(+) deficiency on culture medium with low Ca(2+) (0.15 mM) and <200 microM K(+). Interestingly, the capacity of hkt1 mutations to suppress the Na(+) hypersensitivity of the sos3-1 mutant is reduced substantially when seedlings are grown in medium with low Ca(2+) (0.15 mM). These results indicate that AtHKT1 is a salt tolerance determinant that controls Na(+) entry and high affinity K(+) uptake. The hkt1 mutations have revealed the existence of another Na(+) influx system(s) whose activity is reduced by high [Ca(2+)](ext).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil Bacteria Confer Plant Salt Tolerance by Tissue-Specific Regulation of the Sodium Transporter <italic>HKT1</italic>

Elevated sodium (Na) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K transporter (HKT)1 controls Na import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1’s role in regulating Na homeostasis. Here, we report that tissuespecific regulation of HKT1 by the soil bacterium Bacillus ...

متن کامل

Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants.

T-DNA disruption mutations in the AtHKT1 gene have previously been shown to suppress the salt sensitivity of the sos3 mutant. However, both sos3 and athkt1 single mutants show sodium (Na+) hypersensitivity. In the present study we further analyzed the underlying mechanisms for these non-additive and counteracting Na+ sensitivities by characterizing athkt1-1 sos3 and athkt1-2 sos3 double mutant ...

متن کامل

Sodium Chloride Salt Tolerance Evaluation and Classification of Spring Rapeseed (Brassica napus L.)

Abiotic stresses such as salinity, are factors that severely affects agricultural production. To evaluate the effects of salinity on some morphological and physiological traits related to salt tolerance of 22 genotypes of spring rapeseed cultivars in the vegetative growth stage, an experiment was conducted as a split plot form based on Randomized Complete Blocks Design using levels of salinity:...

متن کامل

AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta.

Genetic and physiological data establish that Arabidopsis AtHKT1 facilitates Na(+) homeostasis in planta and by this function modulates K(+) nutrient status. Mutations that disrupt AtHKT1 function suppress NaCl sensitivity of sos1-1 and sos2-2, as well as of sos3-1 seedlings grown in vitro and plants grown in controlled environmental conditions. hkt1 suppression of sos3-1 NaCl sensitivity is li...

متن کامل

Natural Variants of AtHKT1 Enhance Na+ Accumulation in Two Wild Populations of Arabidopsis

Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomic strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here, we report on the coupling of high-throughput e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 24  شماره 

صفحات  -

تاریخ انتشار 2001